Share Email Print
cover

Proceedings Paper

Analysis of sequential frame synchronizers in Gaussian noise channels (Invited Paper)
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We present a framework for the analysis of frame synchronization based on Synchronization Words (SWs), where the detection is based on the common sequential algorithm: the received samples are observed over a window of length equal to the SW; over this window a metric (e.g. correlation) is computed; a SW is declared if the computed metric is greater than a proper threshold, otherwise the observation window is time-shifted of one sample. We assume a Gaussian channel, antipodal signalling and coherent detection, where soft values are provided to the frame synchronizer. We state the problem starting from the hypothesis testing theory, deriving the optimum metric (optimum likelihood ratio test (LRT)) according to the Neyman-Pearson lemma. When the data distribution is unknown, we design a simple and effective test based on the Generalized LRT (GLRT). %added - begin We also analyze the performance of the commonly used correlation metric, both in the "hard" and "soft" version. We show that synchronization by correlation can be greatly improved by the LRT and GLRT metrics, and also that, among correlation based tests, sometimes hard correlation is better than soft correlation. The obtained closed form expressions allow the derivation of the receiver operating characteristic (ROC) curves for the LRT and GLRT synchronizers, showing a remarkable gain with respect to synchronization based on correlation metric. The effect on the performance of non-equally distributed data is also shown.

Paper Details

Date Published: 23 May 2005
PDF: 14 pages
Proc. SPIE 5847, Noise in Communication Systems, (23 May 2005); doi: 10.1117/12.611895
Show Author Affiliations
Marco Chiani, Univ. of Bologna (Italy)
Maria G. Martini, Univ. of Bologna (Italy)


Published in SPIE Proceedings Vol. 5847:
Noise in Communication Systems
Costas N. Georghiades; Langford B. White, Editor(s)

© SPIE. Terms of Use
Back to Top