Share Email Print

Proceedings Paper

An enhanced stream mining approach for network anomaly detection
Author(s): Abdelghani Bellaachia; Rajat Bhatt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Network anomaly detection is one of the hot topics in the market today. Currently, researchers are trying to find a way in which machines could automatically learn both normal and anomalous behavior and thus detect anomalies if and when they occur. Most important applications which could spring out of these systems is intrusion detection and spam mail detection. In this paper, the primary focus on the problem and solution of “real time” network intrusion detection although the underlying theory discussed may be used for other applications of anomaly detection (like spam detection or spy-ware detection) too. Since a machine needs a learning process on its own, data mining has been chosen as a preferred technique. The object of this paper is to present a real time clustering system; we call Enhanced Stream Mining (ESM) which could analyze packet information (headers, and data) to determine intrusions.

Paper Details

Date Published: 28 March 2005
PDF: 10 pages
Proc. SPIE 5812, Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, (28 March 2005); doi: 10.1117/12.611168
Show Author Affiliations
Abdelghani Bellaachia, George Washington Univ. (United States)
Rajat Bhatt, George Washington Univ. (United States)

Published in SPIE Proceedings Vol. 5812:
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top