Share Email Print
cover

Proceedings Paper

The quantum to classical transition in continuously measured bipartite entangled systems
Author(s): Shohini Ghose; Paul M. Alsing; Ivan H. Deutsch; Barry C. Sanders
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We study the quantum to classical transition in bipartite entangled systems in which one system is continuously coupled to a measurement apparatus as in the von Neumann model of quantum measurement. As an example, we study the open system dynamics of a particle in a harmonic well whose motion in the well is coupled to the internal spin. This system provides a rich illustration of the quantum to classical transition in weakly measured coupled systems. We analyze and derive conditions for which the dual constraints of strong localization/small noise required for the quantum-classical transition are satisfied for both regular and chaotic dynamics. We also study the dynamics of bipartite entanglement in the regime where classical trajectories emerge in the measurement record. Our analysis shows the surprising result that bipartite entanglement can persist in the classical limit.

Paper Details

Date Published: 23 May 2005
PDF: 9 pages
Proc. SPIE 5842, Fluctuations and Noise in Photonics and Quantum Optics III, (23 May 2005); doi: 10.1117/12.609076
Show Author Affiliations
Shohini Ghose, Univ. of Calgary (Canada)
Paul M. Alsing, Univ. of New Mexico (United States)
Ivan H. Deutsch, Univ. of New Mexico (United States)
Barry C. Sanders, Univ. of Calgary (Canada)


Published in SPIE Proceedings Vol. 5842:
Fluctuations and Noise in Photonics and Quantum Optics III
Philip R. Hemmer; Julio R. Gea-Banacloche; Peter Heszler; M. Suhail Zubairy, Editor(s)

© SPIE. Terms of Use
Back to Top