Share Email Print
cover

Proceedings Paper

A methodology for the characterization of arithmetic circuits on CMOS deep submicron technologies
Author(s): Adrian Estrada; Carlos J. Jimenez; Manuel Valencia
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Integration technologies have favored the design and implementation of more complex circuits. Thanks to this increased complexity, these circuits are capable of implementing algorithms which a few years ago were too expensive in both area and computational resources. However, they now offer interesting choices which should be considered. This new generation of integrated circuits nevertheless presents other kinds of restrictions that the designer should bear in mind. Parameters such as frequency of operation or power consumption are new restrictions that the designer has to deal with in order to fulfill the conditions established by the circuit functionality. Finally, the shrinking integration scale of current technologies makes the timing behavior of the design differ from previous technologies. Thus, a review of the timing behavior of the digital circuit should be done. So far, arithmetic circuits have been used as a benchmark for the analysis and design procedures of digital circuits. Therefore, it is our goal now to analyze both conventional and modern arithmetic circuits structures for different deep-submicron technologies. To achieve this goal, a good solution is to characterize a set of algorithmic circuits for several deep submicron processes, so that the designer can select the most suitable one depending upon the intended application and existing restrictions. In this paper, the first steps to attain such selection are presented. In particular, we propose a design and VHDL characterization methodology based on an RTL description of each component, on the utilization of an automated synthesis tool, and on the generation of logic characteristics from the logic level. This methodology is applied to a set of adders structures, the results of which are also presented.

Paper Details

Date Published: 30 June 2005
PDF: 11 pages
Proc. SPIE 5837, VLSI Circuits and Systems II, (30 June 2005); doi: 10.1117/12.608816
Show Author Affiliations
Adrian Estrada, Univ. of Seville (Spain)
Carlos J. Jimenez, Univ. of Seville (Spain)
Manuel Valencia, Univ. of Seville (Spain)


Published in SPIE Proceedings Vol. 5837:
VLSI Circuits and Systems II
Jose Fco. Lopez; Francisco V. Fernandez; Jose Maria Lopez-Villegas; Jose M. de la Rosa, Editor(s)

© SPIE. Terms of Use
Back to Top