Share Email Print
cover

Proceedings Paper

Low frequency noise of light emitting diodes (Invited Paper)
Author(s): S. L. Rumyantsev; S. Sawyer; N. Pala; M. S. Shur; Yu. Bilenko; J. P. Zhang; X. Hu; A. Lunev; J. Deng; R. Gaska
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Light emitting diodes (LEDs) are excellent candidates for the applications requiring low noise light sources with wavelengths ranging from 200 nm to 900 nm. These applications include the detection of fluorescence from protein molecules excited with the ultraviolet (UV) light (200-300nm) for identifying miniscule amounts of hazardous biological pathogens. The detection system including the light source must exhibit low noise and high stability over tens of minutes. In comparison with xenon, tungsten halogen lamps, lasers, and other conventional UV sources, UV LEDs are more stable, have lower noise, are smaller, cheaper, and easier to use. We report on the low frequency fluctuations of the current and light intensity of LEDs (fabricated by SET, Inc.) with wavelengths ranging from 265nm to 340nm. The results are compared with the noise properties of the halogen lamps and other commercially available LEDs with the wavelengths of 375nm, 505nm and 740nm. We show that the LEDs fabricated by Sensor Electronic technology, Inc. are suitable for studying steady state and time-varying UV fluorescence of biological materials. The correlation coefficient between the current and light intensity fluctuations varies with the LED current and load resistance. This dependence is explained in terms of the contributions to the 1/f noise from the active region and from the LED series resistance. The noise level could be reduced by operating the LEDs at a certain optimum current level and by using a large external series resistance (in the current source driving mode).

Paper Details

Date Published: 23 May 2005
PDF: 11 pages
Proc. SPIE 5844, Noise in Devices and Circuits III, (23 May 2005); doi: 10.1117/12.608559
Show Author Affiliations
S. L. Rumyantsev, Rensselaer Polytechnic Institute (United States)
The Ioffe Institute of Russian Academy of Sciences (Russia)
S. Sawyer, Rensselaer Polytechnic Institute (United States)
N. Pala, Rensselaer Polytechnic Institute (United States)
Sensor Electronic Technology, Inc. (United States)
M. S. Shur, Rensselaer Polytechnic Institute (United States)
Yu. Bilenko, Sensor Electronic Technology, Inc. (United States)
J. P. Zhang, Sensor Electronic Technology, Inc. (United States)
X. Hu, Sensor Electronic Technology, Inc. (United States)
A. Lunev, Sensor Electronic Technology, Inc. (United States)
J. Deng, Sensor Electronic Technology, Inc. (United States)
R. Gaska, Sensor Electronic Technology, Inc. (United States)


Published in SPIE Proceedings Vol. 5844:
Noise in Devices and Circuits III
Alexander A. Balandin; Francois Danneville; M. Jamal Deen; Daniel M. Fleetwood, Editor(s)

© SPIE. Terms of Use
Back to Top