Share Email Print
cover

Proceedings Paper

NMOS symmetric load ring VCOs modeling for submicron technologies
Author(s): M. Helena Fino
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Voltage Controlled Oscillators (VCOs) are a key element in PLL design. The simulation of VCOs is a time consuming process because transient circuit simulations must run long enough that the steady state is attained. Furthermore, the robustness of design against operating and technological conditions must also be tested by simulating the circuits at several corners, thus making the design methodology based in iterative simulation rather prohibitive for this class of circuits. The development of efficient and reliable VCO models is therefore a very important task, not only for the automation of the circuit design, but for design space exploration as well. Besides accuracy and simplicity, models must easily adapt to the rapid technology evolution. In order to grant such robustness, we must develop models based on transistor level technological parameters. This paper presents an accurate model for submicron Voltage Controlled Oscillators (VCOs). The model obtained is based on the Npower MOS model, yielding quite accurate results for sub micron technologies. An example considering a 1.2V TSMC013 VCO is presented, where the accuracy of the results obtained against Hspice simulation is shown. Results obtained in about 2 seconds have 4% average error, compared to simulations taking over 15 minutes.

Paper Details

Date Published: 30 June 2005
PDF: 10 pages
Proc. SPIE 5837, VLSI Circuits and Systems II, (30 June 2005); doi: 10.1117/12.608305
Show Author Affiliations
M. Helena Fino, Univ. Nova de Lisboa (Portugal)


Published in SPIE Proceedings Vol. 5837:
VLSI Circuits and Systems II
Jose Fco. Lopez; Francisco V. Fernandez; Jose Maria Lopez-Villegas; Jose M. de la Rosa, Editor(s)

© SPIE. Terms of Use
Back to Top