Share Email Print

Proceedings Paper

Augmentation of a commercial satellite system for military communications
Author(s): Eric G. Butte; Michael Thorburn
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Future U.S. MILSATCOM will rely on a complex satellite design to implement the TSAT satellite system that was developed on the Transformational Communication Architecture program. TSAT will deliver secured IP based, on-demand communication system to meet the needs of the military and the warfighter and will demand a very large satellite system, program, and an anticipated lengthy deployment time. An alternate system is proposed that can give IP based communications in a significantly shorter time frame. A constellation of commercial-like satellites, with transponded Ka-, Ku- and X-band, would nicely complement the MILSATCOM fleet. The services provided by these satellites would enable widespread communications services such as IP to the theatre, augmenting the DSCS, Wideband Gapfiller, and protected communications systems of MILSTAR and Advanced EHF. The capacity provided by the dedicated commercial satellites would help provide the capacity demanded by the warfighter as MILSATCOM transitions from today's technology to the TSAT system of tomorrow's Transformational Communications Architecture. This paper will discuss the satellite concept design and how it can augment the MILSATCOM fleet and show a more flexible approach of bandwidth management to support fixed and COTM terminals.

Paper Details

Date Published: 2 June 2005
PDF: 11 pages
Proc. SPIE 5819, Digital Wireless Communications VII and Space Communication Technologies, (2 June 2005); doi: 10.1117/12.608180
Show Author Affiliations
Eric G. Butte, Space Systems/Loral (United States)
Michael Thorburn, Space Systems/Loral (United States)

Published in SPIE Proceedings Vol. 5819:
Digital Wireless Communications VII and Space Communication Technologies
Rabindra Singh; Raghuveer M. Rao; Sohail A. Dianat; Michael D. Zoltowski, Editor(s)

© SPIE. Terms of Use
Back to Top