Share Email Print

Proceedings Paper

On reduction of risks in UXO and mine detection using remote sensing systems and related synthetic image simulation
Author(s): Charles R. Bostater
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is important to understand remote sensing systems and associated platforms in the context of autonomous or semi-autonomous designs for (robotic & mechatronics) that may be affect the motion control or stabilization aspects of the imagery, scan lines or fixed points scanned. This need can be most easily conceived as being related to the reduction of risks associated with false detection as well as the risks associated with hardware and software failure and risks associated with the actual operation of sensor and platform in dangerous environments. Thus safety is ultimately our concern when it comes to risk assessment. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems and (d) creation of synthetic signatures obtained for detection of targets in the aquatic environment. New systems - sensing systems as well as autonomous or semiautonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons as well as for demining and UXO detection. These same systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring and surveillance.

Paper Details

Date Published: 10 June 2005
PDF: 14 pages
Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); doi: 10.1117/12.607533
Show Author Affiliations
Charles R. Bostater, Florida Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5794:
Detection and Remediation Technologies for Mines and Minelike Targets X
Russell S. Harmon; J. Thomas Broach; John H. Holloway, Editor(s)

© SPIE. Terms of Use
Back to Top