Share Email Print
cover

Proceedings Paper

A modular programmable digital UHF transponder
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A reprogrammable digital transponder architecture allows a common product design to be scaled to meet varying user capacity requirements, match the transponder to the spacecraft resources, and maximize affordability by minimizing non-recurring costs. On-orbit frequency programmability permits the design and hardware development to proceed in parallel with the frequency coordination process, reducing schedule risks and providing operational flexibility. Leverage of digital processing technologies achieves improved channel performance characteristics compared with traditional implementations while also allowing channel characteristics such as selectivity, adjacent channel rejection, and channel frequency plans to be altered in response to the on-orbit interference environment. Channel passband shapes can also be altered for higher capacity waveforms that require different passband shapes or that need improved phase linearity over wider passbands than legacy waveforms. The ability to change these parameters on-orbit in response to upgraded ground terminal technology made possible by software-based radios will allow extended mission life without compromising communications capabilities. An ultra-high frequency (UHF) transponder with a scalable, expandable (or contractible) modular architecture, on-orbit frequency selection over entire communications bands, and functional reprogrammability through digital signal processing capabilities is described.

Paper Details

Date Published: 2 June 2005
PDF: 9 pages
Proc. SPIE 5819, Digital Wireless Communications VII and Space Communication Technologies, (2 June 2005); doi: 10.1117/12.606871
Show Author Affiliations
Mark Harris, Raytheon Co. (United States)
Joe Dobrzanski, Raytheon Co. (United States)


Published in SPIE Proceedings Vol. 5819:
Digital Wireless Communications VII and Space Communication Technologies
Rabindra Singh; Raghuveer M. Rao; Sohail A. Dianat; Michael D. Zoltowski, Editor(s)

© SPIE. Terms of Use
Back to Top