Share Email Print
cover

Proceedings Paper

Fingerprint enhancement using a multispectral sensor
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The level of performance of a biometric fingerprint sensor is critically dependent on the quality of the fingerprint images. One of the most common types of optical fingerprint sensors relies on the phenomenon of total internal reflectance (TIR) to generate an image. Under ideal conditions, a TIR fingerprint sensor can produce high-contrast fingerprint images with excellent feature definition. However, images produced by the same sensor under conditions that include dry skin, dirt on the skin, and marginal contact between the finger and the sensor, are likely to be severely degraded. This paper discusses the use of multispectral sensing as a means to collect additional images with new information about the fingerprint that can significantly augment the system performance under both normal and adverse sample conditions. In the context of this paper, "multispectral sensing" is used to broadly denote a collection of images taken under different illumination conditions: different polarizations, different illumination/detection configurations, as well as different wavelength illumination. Results from three small studies using an early-stage prototype of the multispectral-TIR (MTIR) sensor are presented along with results from the corresponding TIR data. The first experiment produced data from 9 people, 4 fingers from each person and 3 measurements per finger under "normal" conditions. The second experiment provided results from a study performed to test the relative performance of TIR and MTIR images when taken under extreme dry and dirty conditions. The third experiment examined the case where the area of contact between the finger and sensor is greatly reduced.

Paper Details

Date Published: 28 March 2005
PDF: 13 pages
Proc. SPIE 5779, Biometric Technology for Human Identification II, (28 March 2005); doi: 10.1117/12.606628
Show Author Affiliations
Robert K. Rowe, Lumidigm, Inc. (United States)
Kristin A. Nixon, Lumidigm, Inc. (United States)


Published in SPIE Proceedings Vol. 5779:
Biometric Technology for Human Identification II
Anil K. Jain; Nalini K. Ratha, Editor(s)

© SPIE. Terms of Use
Back to Top