Share Email Print

Proceedings Paper

Design restrictions for patterning with off-axis illumination
Author(s): Itty Matthew; Cyrus E. Tabery; Todd Lukanc; Marina Plat; Makoto Takahashi; Amada Wilkison
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Patterning of dense gratings with sub-wavelength pitches presents a challenge that can be addressed using Resolution Enhancement Techniques (RETs) such as dipole illumination, with the dipole axis perpendicular to the dense line orientation. However, this approach leads to pitch and orientation limitations that must be accommodated in layout practices and design rules. In this work we evaluate the impact that dipole illumination has on the process window of isolated lines and loose pitch lines parallel and orthogonal to the dipole axis, and demonstrate the use of OPC and design restrictions to minimize this impact. Semi-dense and isolated features need to be treated as a function of their orientation with respect to the dipole. Specifically, isolated features oriented along the axis of the dipole have larger process margins than the same feature oriented perpendicular to this axis. We systematically explore the process margins for various CDs, pitches and orientations, and compare the results with simulations. We demonstrate that the dipole illumination restricts the ranges of sizes, pitches and orientations that can be printed with sufficient process margin. Knowledge of these restrictions and comparing them with simulation enables us to evaluate the suitability of simulations as a predictor for design rules to restrict layout. The results enable us to propose design rules that would enable single-mask solutions for layers using dipole illumination.

Paper Details

Date Published: 12 May 2005
PDF: 12 pages
Proc. SPIE 5754, Optical Microlithography XVIII, (12 May 2005); doi: 10.1117/12.606444
Show Author Affiliations
Itty Matthew, Advanced Micro Devices (United States)
Cyrus E. Tabery, Advanced Micro Devices (United States)
Todd Lukanc, Advanced Micro Devices (United States)
Marina Plat, Advanced Micro Devices (United States)
Makoto Takahashi, Advanced Micro Devices (United States)
Amada Wilkison, Advanced Micro Devices (United States)

Published in SPIE Proceedings Vol. 5754:
Optical Microlithography XVIII
Bruce W. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top