Share Email Print

Proceedings Paper

Correcting transmitted wavefronts using magnetorheological finishing (MRF)
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Magnetorheological finishing (MRF®) is a deterministic polishing process. Typically, an MRF polishing cycle is used to improve the figure of an optical surface (e.g. reduce the irregularity of a spherical surface to λ/20 PV). The hitmap for this process is based off of a surface (reflection) measurement. However, because MRF polishing is a subaperture process, it is not limited to producing perfectly flat or perfectly spherical surfaces. Indeed, the polishing process can converge to any desired surface shape. This is a particularly useful, enabling feature that can be used to perform transmitted wavefront corrections. One method to produce a perfect transmitted wavefront is to polish perfect surfaces throughout the system, which assumes perfect material homogeneity. In some instances, this can also be accomplished by measuring the transmitted wavefront of an imperfect system, and correcting it by polishing a compensating surface shape into a single surface. By correcting transmitted wavefront data, rather than a surface measurement, this can be a fairly straightforward process. This process can correct for material inhomogeneities, improve system tolerances, and correct prism angles. This paper will begin by giving an overview of transmitted wavefront tests. It will explain how this data can be used to perform a correction by an MRF polishing cycle. Finally, we present some results from corrections of optical systems such as laser rods and prisms.

Paper Details

Date Published: 2 May 2005
PDF: 3 pages
Proc. SPIE 10315, Optifab 2005: Technical Digest, 103150M (2 May 2005); doi: 10.1117/12.606369
Show Author Affiliations
Christopher Hall, QED Technologies (United States)
Stephen O'Donohue, QED Technologies (United States)
Paul Dumas, QED Technologies (United States)

Published in SPIE Proceedings Vol. 10315:
Optifab 2005: Technical Digest
Robert E. Fischer; Masahide Katsuki; Matthias Pfaff; Kathleen A. Richardson, Editor(s)

© SPIE. Terms of Use
Back to Top