Share Email Print
cover

Proceedings Paper

Distributed sensing of RC beams with HCFRP sensors
Author(s): Caiqian Yang; Zhishen Wu; Lieping Ye
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper addresses a novel type of hybrid carbon fiber-reinforced polymer (HCFRP) sensors suitable for the structural health monitoring (SHM) of civil engineering structures. The HCFRP sensors are composed of different types of carbon tows, which are active materials due to their electrical conductivity, piezoresistivity, excellent mechanical properties and resistance to corrosion. The HCFRP sensors are designed to comprise three types of carbon tows-high strength (HS), high modulus (HM) and middle modulus (MM), in order to realize a distributed and broad-based sensing function. Two types of HCFRP sensors, with and without pretreatment, are fabricated and investigated. The HCFRP sensors are bonded with epoxy resins on the bottom concrete surface of RC beam specimens to monitor the average strain, the initiation and propagation of cracks. The experimental results indicate that such kinds of sensors are characterized with broad-based and distributed sensing feasibilities. As a result, the structural health of the RC beams can be monitored and evaluated through characterizing the relationships between the change in electrical resistance of the HCFRP sensors, the average strain and the crack width of the RC beams. In addition, it is also revealed that the damages can also be located by properly adding the number of electrodes.

Paper Details

Date Published: 17 May 2005
PDF: 10 pages
Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); doi: 10.1117/12.606364
Show Author Affiliations
Caiqian Yang, Ibaraki Univ. (Japan)
Zhishen Wu, Ibaraki Univ. (Japan)
Lieping Ye, Tsinghua Univ. (China)


Published in SPIE Proceedings Vol. 5765:
Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top