Share Email Print
cover

Proceedings Paper

Hyperspectral image sharpening using multispectral data
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Multispectral sharpening of hyperspectral imagery fuses the spectral content of a hyperspectral image with the spatial and spectral content of the multispectral image. The approach we have been investigating compares the spectral information present in the multispectral image to the spectral content in the hyperspectral image and derives a set of equations to approximately transform the multispectral image into a synthetic hyperspectral image. This synthetic hyperspectral image is then recombined with the original low-resolution hyperspectral image to produce a sharpened product. We evaluate this technique against several types of data, showing good performance across with all data sets. Recent improvements in the algorithm allow target detection to be performed without loss of performance even at extreme sharpening ratios.

Paper Details

Date Published: 1 June 2005
PDF: 10 pages
Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, (1 June 2005); doi: 10.1117/12.606054
Show Author Affiliations
Michael E. Winter, Univ. of Hawaii at Manoa (United States)
Edwin M. Winter, Technical Research Associates, Inc. (United States)
Scott G. Beaven, Space Computer Corp. (United States)
Anthony J. Ratkowski, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 5806:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top