Share Email Print
cover

Proceedings Paper

Orientation dependence of the properties of PZN-4.5%PT relaxor single crystals
Author(s): T. Liu; C. S. Lynch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Relaxor ferroelectric PZN-xPT and PMN-xPT single crystals exhibit excellent electromechanical coupling properties that depend on crystallographic orientations. In this study compressive stress and electric field were applied to relaxor single crystals [Pb(Zn1/3Nb2/3)O3]0.955-[PbTiO3]0.045 (PZN-4.5%PT) in a series of crystal orientations between <001> and <111>, and the corresponding strain and electric displacement were measured. It was found that as the angle of the orientation cut is rotated from <001> to <111>, the piezoelectric coefficient d33 drops and hysteresis increases dramatically. A crystal variant based approach was used to model the piezoelectric coefficients and remnant electric displacement. The bipolar electro-mechanical response of these crystals is presented. Observed hysteresis and nonlinear phenomena related to polarization reorientation and phase transitions is discussed. In actuator design and performance control, these results give a guideline regarding appropriate external fields in order to prevent depolarization, heat generation and damage.

Paper Details

Date Published: 16 May 2005
PDF: 9 pages
Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); doi: 10.1117/12.606031
Show Author Affiliations
T. Liu, Georgia Institute of Technology (United States)
C. S. Lynch, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5761:
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics
William D. Armstrong, Editor(s)

© SPIE. Terms of Use
Back to Top