Share Email Print
cover

Proceedings Paper

A fluorescence methodology for assessing the polarity and composition of novel thermoresponsive hydrophylic/hydrophobic copolymer system
Author(s): Boguslaw Szczupak; Alan G. Ryder; Yuri A. Rochev; Andrey S. Klymchenko; Alexander Gorelov; Thomas J. Glynn
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of designed polymer coatings for specific applications such as drug delivery or modifying cell response is a critical aspect of medical device manufacturing. The chemical composition and physical characteristics of thin polymer coatings need to be analysed in-situ and this can present difficulties for traditional analytical methods. For example, changes in the polarity of polymer coatings are typically measured using the contact angle (CA) method. This is a simple process and gives good results however; it cannot be used to measure very hydrophilic polymers, or to analyse features smaller than a couple of mm in size. There is a need for a non-contact method for polarity measurement that is suitable for hydrophilic polymers on a macro- and microscopic scale. 4'-diethylamino-3-hydroxyflavone (FE), 5, 6-benzo-4'-diethylamino-3-hydroxyflavone (BFE), and 4'-diethylamino-3-hydroxy-7-methoxyflavone (MFE) are fluorescence probes based on 3-hydroxyflavone. They respond to environment perturbations by shift and changes in the relative intensity of two well-separated bands in the emission spectra. These bands originate from an excited state intramolecular proton transfer (ESIPT) reaction. We have incorporated FE, BFE, and MFE into a novel thermoresponsive hydrophilic/hydrophobic copolymer system (NIPAM-NtBA) and studied its fluorescence behaviour. The fluorescence emission spectra depend strongly on copolymer composition, with increasing hydrophobicity (greater NtBA fraction) leading to a decrease in the value of log (IN*/IT*). This allows for the non-contact, measurement of the exact composition and surface energy of the copolymer system.

Paper Details

Date Published: 3 June 2005
PDF: 11 pages
Proc. SPIE 5826, Opto-Ireland 2005: Optical Sensing and Spectroscopy, (3 June 2005); doi: 10.1117/12.605117
Show Author Affiliations
Boguslaw Szczupak, National Univ. of Ireland/Galway (Ireland)
Alan G. Ryder, National Univ. of Ireland/Galway (Ireland)
Yuri A. Rochev, National Univ. of Ireland/Galway (Ireland)
Andrey S. Klymchenko, Univ. Louis Pasteur (France)
Alexander Gorelov, Univ. College Dublin (Ireland)
Thomas J. Glynn, National Univ. of Ireland/Galway (Ireland)


Published in SPIE Proceedings Vol. 5826:
Opto-Ireland 2005: Optical Sensing and Spectroscopy
Gerard D. O'Sullivan; Brian D. MacCraith; Hugh James Byrne; Enda McGlynn; Alan G. Ryder, Editor(s)

© SPIE. Terms of Use
Back to Top