Share Email Print
cover

Proceedings Paper

Generation of a widely spaced optical frequency comb using an amplitude modulator pair
Author(s): Fatima C. G. Gunning; Andrew D. Ellis
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Multi-wavelength sources are required for wavelength division multiplexed (WDM) optical communication systems, and typically a bank of DFB lasers is used. However, large costs are involved to provide wavelength selected sources and high precision wavelength lockers. Optical comb generation is attractive solution, minimizing the component count and improving wavelength stability. In addition, comb generation offers the potential for new WDM architectures, such as coherent WDM, as it preserves the phase relation between the generated channels. Complex comb generation systems have been introduced in the past, using fibre ring lasers [1] or non-linear effects within long fibres [2]. More recently, simpler set-ups were proposed, including hybrid amplitude-phase modulation schemes [3-5]. However, the narrow line spacing of these systems, typically 17 GHz, restricts their use to bit rates up to 10 Gbit/s. In this paper, we propose and demonstrate a simple method of comb generation that is suitable for bit rates up to 42.667 Gbit/s. The comb generator was composed of two Mach-Zehnder modulators (MZM) in series, each being driven with a sinusoidal wave at 42.667 GHz with a well-defined phase relationship. As a result, 7 comb lines separated by 42.667 GHz were generated from a single source, when amplitude up to 2.2 Vp was applied to the modulators, giving flatness better than 1 dB. By passively multiplexing 8 source lasers with the comb generator and minimising inter-modulator dispersion, it was possible to achieve a multi-wavelength transmitter with 56 channels, with flatness better than 1.2 dB across 20 nm (2.4 THz).

Paper Details

Date Published: 3 June 2005
PDF: 5 pages
Proc. SPIE 5825, Opto-Ireland 2005: Optoelectronics, Photonic Devices, and Optical Networks, (3 June 2005); doi: 10.1117/12.605045
Show Author Affiliations
Fatima C. G. Gunning, Tyndall National Institute (Ireland)
Andrew D. Ellis, Tyndall National Institute (Ireland)


Published in SPIE Proceedings Vol. 5825:
Opto-Ireland 2005: Optoelectronics, Photonic Devices, and Optical Networks
Gerald Farrell; David M. Denieffe; Liam Barry; John Gerard McInerney; Harold S. Gamble; Padraig Hughes; R. Alan Moore, Editor(s)

© SPIE. Terms of Use
Back to Top