Share Email Print
cover

Proceedings Paper

Scaled optical Fourier transform in cylindrical coordinates
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In Optical Signal Processing (OSP) one of the most important operations is the Optical Fourier Transform (OFT). Many different optical arrangements exist which allow implementation of the OFT, however one of the more popular is the Scaled Optical Fourier Transform (SOFT) because, as the name implies, this arrangement allows control over the scale of the output Fourier distribution. Using cylindrical coordinates we examine some of the practical limits introduced by the use of an illuminating spherical lens of finite aperture in the implementation of the SOFT. By deriving simple rules of thumb, based on examining phase and intensity deviations from the ideal unapertured case, we define a volume inside the geometric shadow, which we refer to as a sub-geometric shadow. Inside this sub-geometric shadow we show that the worst case errors in the resulting SOFT, arising due to diffraction, can be quantified and avoided.

Paper Details

Date Published: 8 June 2005
PDF: 12 pages
Proc. SPIE 5827, Opto-Ireland 2005: Photonic Engineering, (8 June 2005); doi: 10.1117/12.604995
Show Author Affiliations
Damien P. Kelly, Univ. College Dublin (Ireland)
John T. Sheridan, Univ. College Dublin (Ireland)
William T. Rhodes, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5827:
Opto-Ireland 2005: Photonic Engineering
Thomas J. Glynn; John T. Sheridan; Brian W. Bowe; Ronan F. O'Dowd; Gerard M. O'Connor; Aidan J.H. Flanagan; Gerard D. O'Sullivan; Gerald Byrne; Jonathan Magee, Editor(s)

© SPIE. Terms of Use
Back to Top