Share Email Print
cover

Proceedings Paper

Recent developments of optical turbulence measurement techniques (Invited Paper)
Author(s): Frank D. Eaton
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

With the advent of new developments in tracking, pointing, and compensation of laser beams over the past several years, a requirement has been established for increasing knowledge of optical turbulence along the propagation path. This has stimulated the development of new methodologies to sense the refractive index structure parameter (Cn2) and derived parameters such as the transverse coherence length (rO), the isoplanatic angle (θO), and the Rytov variance (σχ2). A historical perspective of these methodologies and instrumentation is presented and both in situ and remote sensing techniques are discussed. Recent designs of rO meters are shown. Of particular interest is the development of techniques to derive turbulence parameters such as Cn2, the eddy dissipation rate (ε), the inner scale (lO), and the outer scale (LO). Observational results are discussed using sodar and radar of phenomena generating turbulence including gravity wave activity, jet streams, Kelvin-Helmholtz instabilities, convection, and frontal activity. Both frequency modulated-continuous wave (FMCW) and mesosphere-stratosphere-troposphere (MST) radar are discussed. New techniques and results are shown examining if the turbulent atmosphere is truly Kolmogorov (how often is the structure function represented by the r2/3 law), stationary, isotropic, and homogeneous. Emerging techniques for sensing turbulence such as optical path profilers and lidar are discussed.

Paper Details

Date Published: 25 May 2005
PDF: 10 pages
Proc. SPIE 5793, Atmospheric Propagation II, (25 May 2005); doi: 10.1117/12.604904
Show Author Affiliations
Frank D. Eaton, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 5793:
Atmospheric Propagation II
Cynthia Y. Young; G. Charmaine Gilbreath, Editor(s)

© SPIE. Terms of Use
Back to Top