Share Email Print
cover

Proceedings Paper

Correlation analysis of CD-variation and circuit performance under multiple sources of variability
Author(s): Amir Borna; Chris Progler; David Blaauw
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Variability of digital integrated circuits is becoming an increasing concern with shrinking transistor geometries due to process scaling. As a result, the electrical properties of MOS devices can exhibit significant deviation from their design specifications, causing substantial variation in the performance of high-end designs. Lithography perturbations can affect a number of layout geometries, although the most critical parameter for circuit performance is the transistor channel length or Critical Dimension (CD). Key sources of CD variation include dose, focus, lens aberration and mask errors. In this paper, we compare the impact of above sources of CD variation on circuit performance. We present a new design analysis methodology which models the CD variation from each individual source in static timing analysis for different circuit blocks. Using this analysis capability, we study the impact of lithographic perturbations on block-level circuit performance for two adders. Furthermore, we study the correlation between the CD variability resulting from a lithographic perturbation source, and the resulting circuit performance variability. Through this analysis we determine the suitability of CD variability as an accurate predictor for circuit performance.

Paper Details

Date Published: 5 May 2005
PDF: 10 pages
Proc. SPIE 5756, Design and Process Integration for Microelectronic Manufacturing III, (5 May 2005); doi: 10.1117/12.604606
Show Author Affiliations
Amir Borna, Univ. of Michigan (United States)
Chris Progler, Photronics, Inc. (United States)
David Blaauw, Univ. of Michigan (United States)


Published in SPIE Proceedings Vol. 5756:
Design and Process Integration for Microelectronic Manufacturing III
Lars W. Liebmann, Editor(s)

© SPIE. Terms of Use
Back to Top