Share Email Print
cover

Proceedings Paper

Genie Pro: robust image classification using shape, texture, and spectral information
Author(s): Simon Perkins; Kim Edlund; Diana Esch-Mosher; Damian Eads; Neal Harvey; Steven Brumby
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present Genie Pro, a new software tool for image analysis produced by the ISIS (Intelligent Search in Images and Signals) group at Los Alamos National Laboratory. Like the earlier GENIE tool produced by the same group, Genie Pro is a general purpose adaptive tool that derives automatic pixel classification algorithms for satellite/aerial imagery, from training input provided by a human expert. Genie Pro is a complete rewrite of our earlier work that incorporates many new ideas and concepts. In particular, the new software integrates spectral information; and spatial cues such as texture, local morphology and large-scale shape information; in a much more sophisticated way. In addition, attention has been paid to how the human expert interacts with the software: Genie Pro facilitates highly efficient training through an interactive and iterative “training dialog”. Finally, the new software runs on both Linux and Windows platforms, increasing its versatility. We give detailed descriptions of the new techniques and ideas in Genie Pro, and summarize the results of a recent evaluation of the software.

Paper Details

Date Published: 1 June 2005
PDF: 10 pages
Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, (1 June 2005); doi: 10.1117/12.604519
Show Author Affiliations
Simon Perkins, Los Alamos National Lab. (United States)
Kim Edlund, Los Alamos National Lab. (United States)
Diana Esch-Mosher, Los Alamos National Lab. (United States)
Damian Eads, Los Alamos National Lab. (United States)
Neal Harvey, Los Alamos National Lab. (United States)
Steven Brumby, Los Alamos National Lab. (United States)


Published in SPIE Proceedings Vol. 5806:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top