Share Email Print
cover

Proceedings Paper

Real time calibration and testing of chemical sensors enabled by precision micro-dispensing technology
Author(s): Donald J. Hayes; David W. Taylor
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Precision micro-dispensing based upon ink jet technology has been used in medical diagnostics since the early nineties, and now is moving into a wide range of applications. Ink-jet printing technology can reproducibly dispense micro-droplets of fluid with diameters of 15 to 100 μm (2pl to 5nl) at rates of 0 - 25,000 per second from a single drop-on-demand printhead. The deposition is non-contact, data-driven and can dispense a wide range of fluids. It is a key enabling technology in the development of Bio-MEMS devices, Sensors, Micro-fluidic devices and Micro-optical systems. In this paper, we will discuss the use of this technology for real time calibration and testing of chemical sensors. The technology is based upon test systems developed for olfaction testing which are capable of precisely dispensing chemical aromas in concentration that vary over 6 orders of magnitude. The droplets of each chemical are thermally converted into a vapor that is fed directly into the sensor under test.

Paper Details

Date Published: 20 May 2005
PDF: 8 pages
Proc. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, (20 May 2005); doi: 10.1117/12.604215
Show Author Affiliations
Donald J. Hayes, MicroFab Technologies, Inc. (United States)
David W. Taylor, MicroFab Technologies, Inc. (United States)


Published in SPIE Proceedings Vol. 5778:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top