Share Email Print
cover

Proceedings Paper

A co-evaluation framework for improving segmentation evaluation
Author(s): Hui Zhang; Jason E. Fritts; Sally A. Goldman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Object segmentation is an important preprocessing step for many target recognition applications. Many segmentation methods have been studied, but there is still no satisfactory effectiveness measure which makes it hard to compare different segmentation methods, or even different parameterizations of a single method. A good segmentation evaluation method not only would enable different approaches to be compared, but could also be integrated within the target recognition system to adaptively select the appropriate granularity of the segmentation which in turn could improve the recognition accuracy. A few stand-alone effectiveness measures have been proposed, but these measures examine different fundamental criteria of the objects, or examine the same criteria in a different fashion, so they usually work well in some cases, but poorly in the others. We propose a em co-evaluation framework, in which different effectiveness measures judge the performance of the segmentation in different ways, and their measures are combined by using a machine learning approach which coalesces the results. Experimental results demonstrate that our method performs better than the existing methods.

Paper Details

Date Published: 25 May 2005
PDF: 11 pages
Proc. SPIE 5809, Signal Processing, Sensor Fusion, and Target Recognition XIV, (25 May 2005); doi: 10.1117/12.604213
Show Author Affiliations
Hui Zhang, Washington Univ. (United States)
Jason E. Fritts, Washington Univ. (United States)
Sally A. Goldman, Washington Univ. (United States)


Published in SPIE Proceedings Vol. 5809:
Signal Processing, Sensor Fusion, and Target Recognition XIV
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top