Share Email Print

Proceedings Paper

Surface-contacting vibrometers for seismic landmine detection
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A technique has been developed that exploits remote seismic sources and local measurement of the surface displacement of the ground for the detection of buried landmines. Most of the previously reported investigation of this technique has focused on non-contact displacement sensors in order to ensure the safety of the operators of both handheld and vehicle-based systems. This is not inherently a constraint that requires a non-contact sensor, but rather one requiring a sensor that is non-intrusive (i.e. its presence does not alter the measured quantity). Current research is directed toward the development of autonomous and semi-autonomous robotic systems based on this technique. Here both unit cost and power consumption are issues of comparable importance to the survival of the sensor platform. Non-intrusive surface-contacting vibrometers are therefore a reasonable alternative. Several configurations have been studied for suitable vibrometers. The configuration that has shown the most promise is based on a commercial accelerometer coupled to the ground with a small normal force and isolated from the backing structure that is used to reposition it between measurements. It is a relatively simple matter to detect seismic motion with an accelerometer. The major issue in an effective implementation of the technique is to combine reproducibility with fidelity in the measurement. These are competing goals in that reproducibility is easily achieved with large normal forces, but fidelity requires that these be small. Sufficient reproducibility for imaging purposes has been achieved with normal forces that pose no danger of landmine detonation. Unlike reproducibility, fidelity is linked to both the nature of the imposed force and to its magnitude through the nonlinearity of the soil’s elasticity. Both continuous and incremental motions of the sensor platform have been studied, although incremental movement shows the most promise for the intended application.

Paper Details

Date Published: 10 June 2005
PDF: 11 pages
Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); doi: 10.1117/12.603923
Show Author Affiliations
James S. Martin, Georgia Institute of Technology (United States)
Gregg D. Larson, Georgia Institute of Technology (United States)
Waymond R. Scott Jr., Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5794:
Detection and Remediation Technologies for Mines and Minelike Targets X
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top