Share Email Print

Proceedings Paper

3D luminescent photonic crystal structures
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report the fabrication of photonic crystal phosphors by atomic layer deposition and the subsequent removal of self-assembled opal templates. ZnS:Mn and TiO2 inverse opals as well as ZnS:Mn/TiO2 composite inverse opals were formed. Shifts in the G-L photonic band gap positions were confirmed by reflectivity and transmission measurements and were consistent with photonic band structure calculations. The peak positions confirm that filling terminates at ~86% of the pore volume in agreement the maximum possible filling fraction for the “shell” infiltration of an opal structure. For TiO2 depositions, SEM and AFM analysis reveals ultra-smooth highly conformal films. In addition, infiltration control to < 1 nm was achieved, making fine-tuning of PC properties possible. Significant changes were observed in the emission characteristics for composite ZnS:Mn/TiO2 photonic crystals. This work demonstrates that precisely controlling the placement of materials is possible by ALD, enabling the fabrication of “optimized” structures, including those which modify emission properties.

Paper Details

Date Published: 25 May 2005
PDF: 8 pages
Proc. SPIE 5801, Cockpit and Future Displays for Defense and Security, (25 May 2005); doi: 10.1117/12.603801
Show Author Affiliations
C. J. Summers, Georgia Institute of Technology (United States)
E. Graugnard, Georgia Institute of Technology (United States)
J. S. King, Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5801:
Cockpit and Future Displays for Defense and Security
Darrel G. Hopper; Eric W. Forsythe; David C. Morton; Charles E. Bradford; Henry J. Girolamo, Editor(s)

© SPIE. Terms of Use
Back to Top