Share Email Print
cover

Proceedings Paper

New detection targets for amyloid-reactive probes: spectroscopic recognition of bacterial spores
Author(s): Guilford Jones; Pavel Landsman
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We report characteristic changes in fluorescence of amyloid-binding dyes Thioflavin T (TfT), pinacyanol (PIN) and related dyes, caused by their interaction with suspended Bacillus spore cultures (B. subtilis, B thuringiensis). The gain in TfT emission in the presence of spores allowed their immediate detection in aqueous suspensions, with a sensitivity limit of < 105 spores per ml. The spectroscopic signatures are consistent with a large number of binding sites for the two dyes on spore coats. The possible structural relationship of these dye binding loci with characteristic motifs (β-stacks) of amyloid deposits and other misfolded protein formations suggests new designs for probing biocontamination and also for clinical studies of non-microbial human pathogens (e.g., amyloid-related protein aggregates in prion-related transmissible encephalopathies or in Alzheimer's disease). Also reported is a special screening technique that was designed and used herein for calibration of new detection probes and assays for spore detection. It employed spectroscopic interactions between the candidate amyloid stains and poly(vinylpyrrolidone)-coated colloid silica (Percoll) nanoparticles that also display remarkable parallelism with the corresponding dye-amyloid and dye-spore reactivities. Percoll may thus find new applications as a convenient non-biological structural model mimicking the putative probe-targeted motifs in both classes of bioanalytes. These findings are important in the design of new probes and assays for important human pathogens (i.e. bacterial spores and amyloidogenic protein aggregates).

Paper Details

Date Published: 12 May 2005
PDF: 7 pages
Proc. SPIE 5795, Chemical and Biological Sensing VI, (12 May 2005); doi: 10.1117/12.603774
Show Author Affiliations
Guilford Jones, Boston Univ. (United States)
Pavel Landsman, Boston Univ. (United States)


Published in SPIE Proceedings Vol. 5795:
Chemical and Biological Sensing VI
Patrick J. Gardner, Editor(s)

© SPIE. Terms of Use
Back to Top