Share Email Print
cover

Proceedings Paper

Gas plume species identification in airborne LWIR imagery using constrained stepwise regression analyses
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Identification of constituent gases in effluent plumes is performed using linear least-squares regression techniques. Airborne thermal hyperspectral imagery is used for this study. Synthetic imagery is employed as the test-case for algorithm development. Synthetic images are generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model. The use of synthetic data provides a direct measure of the success of the algorithm through the comparison with truth map outputs. In image test-cases, plumes emanating from factory stacks will have been identified using a separate detection algorithm. The gas identification algorithm being developed in this work is performed only on pixels having been determined to contain the plume. Constrained stepwise linear regression is used in this study. Results indicate that the ability of the algorithm to correctly identify plume gases is directly related to the concentration of the gas. Previous concerns that the algorithm is hindered by spectral overlap were eliminated through the use of constraints on the regression.

Paper Details

Date Published: 1 June 2005
PDF: 12 pages
Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, (1 June 2005); doi: 10.1117/12.603661
Show Author Affiliations
David Pogorzala, Rochester Institute of Technology (United States)
David Messinger, Rochester Institute of Technology (United States)
Carl Salvaggio, Rochester Institute of Technology (United States)
John Schott, Rochester Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5806:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top