Share Email Print

Proceedings Paper

Self-regulating charge control for ultra high resolution scanning electron microscopy
Author(s): Milos Toth; Brad L. Thiel; William R. Knowles
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a low vacuum tool for ultra high resolution scanning electron microscopy of insulators and floating conductors. Charging is stabilized by ionized gas molecules generated using an environmental secondary electron detector designed to operate within the magnetic field on an immersion objective lens. The charge stabilization mechanism yields consistent charge control that is transparent to the operator, and independent of the tasks performed during imaging. This is illustrated by series of artifact-free, high resolution images of an insulating test sample acquired as a function of magnification and scan speed, at a number of accelerating voltages. The low vacuum method is compared to the high vacuum technique of adjusting the electron beam landing energy so as to minimize charging artifacts (i.e., the "total yield" method). The low vacuum approach is less sensitive to changes in beam current density (determined by the beam current, magnification, scan speed and beam diameter) and yields higher ultimate image resolution. The resolution improvement results from effective suppression of both charge-induced defocusing of the electron beam and distortion of the scan pattern.

Paper Details

Date Published: 9 May 2005
PDF: 11 pages
Proc. SPIE 5766, Testing, Reliability, and Application of Micro- and Nano-Material Systems III, (9 May 2005); doi: 10.1117/12.603070
Show Author Affiliations
Milos Toth, FEI Co. (United States)
Brad L. Thiel, Univ. at Albany/SUNY (United States)
William R. Knowles, FEI Co. (United States)

Published in SPIE Proceedings Vol. 5766:
Testing, Reliability, and Application of Micro- and Nano-Material Systems III
Robert E. Geer; Norbert Meyendorf; George Y. Baaklini; Bernd Michel, Editor(s)

© SPIE. Terms of Use
Back to Top