Share Email Print
cover

Proceedings Paper

Analysis of beam steering tolerances and divergence for various long range FSO communication links
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Through the use of recent technological developments, it is now feasible to establish free-space optical (FSO) communication links over ultra-long distances. Recent research has shown that FSO systems could be deployed to establish high-rate data links to deep space. This study analyzes beam steering tolerances, beam divergence, and geometric loss for different distance ranges of interest for FSO communication links based on a mechanical gimbaled beam steering mechanism. The tolerance, divergence and geometric loss calculations are performed to evaluate the feasibility of establishing FSO links between the Earth and satellites, the Earth and aircraft, aircraft and satellites, the Earth and moon, the Earth and Mars, and the Earth and the edge of the solar system. The analysis and calculations performed take into consideration the availability of new technology such as low noise photon-counting detectors and fiber lasers and amplifiers. The beam steering tolerance and divergence calculations provide beneficial information for determining the extent to which future FSO systems could be deployed for both commercial, military and space exploration applications. Recommendations on the suitability of an FSO communication link for various applications are then made based on the beam steering tolerance and divergence calculations.

Paper Details

Date Published: 2 June 2005
PDF: 8 pages
Proc. SPIE 5819, Digital Wireless Communications VII and Space Communication Technologies, (2 June 2005); doi: 10.1117/12.602503
Show Author Affiliations
Alan Harris, The Univ. of Oklahoma (United States)
James J. Sluss, The Univ. of Oklahoma (United States)
Hazem H. Refai, The Univ. of Oklahoma (United States)
Peter G. LoPresti, The Univ. of Tulsa (United States)


Published in SPIE Proceedings Vol. 5819:
Digital Wireless Communications VII and Space Communication Technologies
Rabindra Singh; Raghuveer M. Rao; Sohail A. Dianat; Michael D. Zoltowski, Editor(s)

© SPIE. Terms of Use
Back to Top