Share Email Print
cover

Proceedings Paper

Real-time detection of single quantum dots inside living cells (Invited Paper)
Author(s): Amit Agrawal; Shuming Nie
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Quantum dots have opened up a plethora of possibilities in biological detection and imaging. Their small size, stable luminescence and resistance to photobleaching make them ideal for intracellular imaging and detection. It is highly desirable to develop tools that will allow detection and imaging of biological processes without disrupting native cellular processes. A significant barrier to use of quantum dots in living cells is ability to deliver and detect single quantum dots inside living cells. In this article we describe a bacterial toxin dependent method that allows delivery of single quantum dots. We also demonstrate use of a single molecule detection system to detect both single and aggregated quantum dots in living cells in real time. We compare results of quantum dot delivery from receptor mediated endocytosis and HIV-TAT peptide mediated delivery methods with the bacterial toxin Streptolysin O. Our results show that Streptolysin O is able to deliver single quantum dots to living cells. Our results also indicate that the mechanism of cargo delivery by HIV-TAT peptide might be endocytosis dependent. Ongoing work in this direction involves showing that single, functional quantum dot probes can also be delivered using the bacterial toxin.

Paper Details

Date Published: 28 April 2005
PDF: 7 pages
Proc. SPIE 5705, Nanobiophotonics and Biomedical Applications II, (28 April 2005); doi: 10.1117/12.602351
Show Author Affiliations
Amit Agrawal, Emory Univ. (United States)
Georgia Institute of Technology (United States)
Shuming Nie, Emory Univ. (United States)
Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5705:
Nanobiophotonics and Biomedical Applications II
Alexander N. Cartwright; Marek Osinski, Editor(s)

© SPIE. Terms of Use
Back to Top