Share Email Print
cover

Proceedings Paper

An integrated framework for high level design of high performance signal processing circuits on FPGAs
Author(s): K. Benkrid; S. Belkacemi; S. Sukhsawas
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.

Paper Details

Date Published: 1 June 2005
PDF: 12 pages
Proc. SPIE 5823, Opto-Ireland 2005: Imaging and Vision, (1 June 2005); doi: 10.1117/12.602319
Show Author Affiliations
K. Benkrid, The Queen's Univ. of Belfast (United Kingdom)
S. Belkacemi, The Queen's Univ. of Belfast (United Kingdom)
S. Sukhsawas, The Queen's Univ. of Belfast (United Kingdom)


Published in SPIE Proceedings Vol. 5823:
Opto-Ireland 2005: Imaging and Vision
Fionn D. Murtagh, Editor(s)

© SPIE. Terms of Use
Back to Top