Share Email Print
cover

Proceedings Paper

Finite element model updating of structures using a hybrid optimization technique
Author(s): Zhongdong Duan; Yang Liu; Billie F. Spencer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Finite element model updating of structures usually results in a nonlinear optimization problem. Finding an optimization technique with high efficiency is one of the key issues for model updating. A hybrid optimization technique is proposed in this paper, which draws together the global searching capability of the chaos-based optimization technique and high searching efficiency of the trust-region optimization method. The hybrid approach is demonstrated to be more efficient and prone to obtain a global minimum as compared to conventional methods using a two dimensional test function. Then this hybrid method is employed to update a 14-bay frame model. An optimization problem for model updating using modal frequencies and modal shapes is formulated. Studies using numerically simulated data and experimental data show that the proposed hybrid optimization technique is very promising for structural model updating.

Paper Details

Date Published: 17 May 2005
PDF: 10 pages
Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); doi: 10.1117/12.602009
Show Author Affiliations
Zhongdong Duan, Harbin Institute of Technology (China)
Yang Liu, Harbin Institute of Technology (China)
Billie F. Spencer, Univ. of Illinois at Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 5765:
Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top