Share Email Print

Proceedings Paper

Strategies of optical proximity correction dedicated to chromeless phase lithography for 65 and 45 nm node
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper shows the capability of chromeless phase lithography (CPL) and is particularly focused on different strategies for optical proximity corrections (OPC). A chromeless phase database is easily obtained from the original layout by changing the chromium pattern into a phase pattern. However, a specific optical proximity correction has to be applied due to the phase effect and the high transmission of the mask. Mask Error Enhancement Factor (MEEF) and process window for CPL technology have been estimated through wafer exposures. Moreover, various optical proximity correction strategies have been explored through a comparison between phase and chromium features such as hammerhead, zebra and scattering bars 1,2. Indeed, depending on the density of the pattern, we can improve the contrast and the process window by changing the local transmission. The transmission can be controlled by the addition of sub resolution chromium feature such as zebra chromium transverse features on the line for dense pattern, or chromium scattering bars in the space for a sparse pattern, or chromium patches on the line end. From 65 nm node measurements and 45 nm node simulations, the authors will then present the most effective sub resolution pattern to implement.

Paper Details

Date Published: 12 May 2004
PDF: 12 pages
Proc. SPIE 5754, Optical Microlithography XVIII, (12 May 2004); doi: 10.1117/12.601743
Show Author Affiliations
Emilien Robert, STMicroelectronics (France)
Philippe Thony, CEA-LETI (France)
Kevin Lucas, Freescale (France)
Daniel Henry, STMicroelectronics (France)
Bryan Kasprowicz, Photronics, Inc. (United States)
Sergei V. Postnikov, Freescale (France)
Will E. Conley, Freescale (United States)
Wei Wu, Freescale (United States)
Lloyd Litt, Freescale (United States)

Published in SPIE Proceedings Vol. 5754:
Optical Microlithography XVIII
Bruce W. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top