Share Email Print

Proceedings Paper

Reduced-density-matrix descriptions for linear and non-linear coherent electromagnetic interactions
Author(s): Verne L. Jacobs
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A reduced-density-matrix description is developed for linear and non-linear electromagnetic interactions of quantized electronic systems in the presence of environmental decoherence and relaxation phenomena. Applications of interest include many-electron atomic systems (in electron-ion beam interactions, gases, and high-temperature plasmas) and semiconductor materials (bulk crystals and nanostructures). Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified manner. The standard Born (lowest-order perturbation-theory) and Markov (short-memory-time) approximations are systematically introduced within the framework of the general non-perturbative and non-Markovian formulations. A preliminary semiclassical treatment of the electromagnetic interaction is introduced. Compact Liouville-space operator expressions are derived for the linear and the general (n’th order) non-linear electromagnetic-response tensors, allowing for coherent initial electronic excitations and for the full tetradic-matrix form of the Liouville-space self-energy operator representing the environmental interactions. It is emphasized that quantum-coherent many-body interactions cannot be adequately treated as environmentally induced phenomena.

Paper Details

Date Published: 4 April 2005
PDF: 10 pages
Proc. SPIE 5735, Advanced Optical and Quantum Memories and Computing II, (4 April 2005); doi: 10.1117/12.601713
Show Author Affiliations
Verne L. Jacobs, Naval Research Lab. (United States)

Published in SPIE Proceedings Vol. 5735:
Advanced Optical and Quantum Memories and Computing II
Hans J. Coufal; Zameer U. Hasan; Alan E. Craig, Editor(s)

© SPIE. Terms of Use
Back to Top