Share Email Print
cover

Proceedings Paper

Orthotropic deflection model for corner-supported plates with segmented in-plane actuators
Author(s): Jordan E. Massad; Gregory N. Washington; Hartono Sumali
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The shape control of thin, flexible structures has been studied primarily for edge-supported thin plates. For applications involving reconfigurable apertures such as membrane optics and active RF surfaces, corner-supported configurations may prove more applicable. Corner-supported adaptive structures allow for parabolic geometries, greater flexibility, and larger achievable deflections when compared to edge-supported geometries under similar actuation conditions. Preliminary models have been developed for corner-supported thin plates actuated by isotropic piezoelectric actuators. However, typical piezoelectric materials are known to be orthotropic. This paper extends a previously-developed isotropic model for a corner-supported, thin, rectangular bimorph to a more general orthotropic model for a bimorph actuated by a two-dimensional array of segmented PVDF laminates. First, a model determining the deflected shape of an orthotropic laminate for a given distribution of voltages over the actuator array is derived. Second, symmetric actuation of a bimorph consisting of orthotropic material is simulated using orthogonally-oriented laminae. Finally, the results of the model are shown to agree well with layered-shell finite element simulations for simple and complex voltage distributions.

Paper Details

Date Published: 19 May 2005
PDF: 12 pages
Proc. SPIE 5757, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, (19 May 2005); doi: 10.1117/12.601533
Show Author Affiliations
Jordan E. Massad, Sandia National Labs. (United States)
Gregory N. Washington, Sandia National Labs. (United States)
Hartono Sumali, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 5757:
Smart Structures and Materials 2005: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top