Share Email Print

Proceedings Paper

EUV focus sensor: design and modeling
Author(s): Kenneth A. Goldberg; Maureen E. Teyssier; J. Alexander Liddle
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.

Paper Details

Date Published: 6 May 2005
PDF: 8 pages
Proc. SPIE 5751, Emerging Lithographic Technologies IX, (6 May 2005); doi: 10.1117/12.601522
Show Author Affiliations
Kenneth A. Goldberg, Lawrence Berkeley National Lab. (United States)
Maureen E. Teyssier, Univ. of California/Berkeley (United States)
J. Alexander Liddle, Lawrence Berkeley National Lab. (United States)

Published in SPIE Proceedings Vol. 5751:
Emerging Lithographic Technologies IX
R. Scott Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top