Share Email Print
cover

Proceedings Paper

Longitudinal dynamics of a perching aircraft concept
Author(s): Adam Wickenheiser; Ephrahim Garcia; Martin Waszak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper introduces a morphing aircraft concept whose purpose is to demonstrate a new bio-inspired flight capability: perching. Perching is a maneuver that utilizes primarily aerodynamics -- as opposed to thrust generation -- to achieve a vertical or short landing. The flight vehicle that will accomplish this is described herein with particular emphasis on its addition levels of actuation beyond the traditional aircraft control surfaces. A computer model of the aircraft is developed in order to predict the changes in applied aerodynamic loads as it morphs and transitions through different flight regimes. The analysis of this model is outlined, including a lifting-line-based analytical technique and a trim and stability analysis. These analytical methods -- compared to panel or computational fluid dynamics (CFD) methods -- are considered desirable for the analysis of a large number of vehicle configurations and flight conditions. The longitudinal dynamics of this aircraft are studied, and several interesting results are presented. Of special interest are the changes in vehicle dynamics as the aircraft morphs from a cruise configuration to initiate the perching maneuver. Changes in trim conditions and stability are examined as functions of vehicle geometry. The time response to changes in vehicle configuration is also presented.

Paper Details

Date Published: 17 May 2005
PDF: 11 pages
Proc. SPIE 5764, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, (17 May 2005); doi: 10.1117/12.601512
Show Author Affiliations
Adam Wickenheiser, Cornell Univ. (United States)
Ephrahim Garcia, Cornell Univ. (United States)
Martin Waszak, NASA Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 5764:
Smart Structures and Materials 2005: Smart Structures and Integrated Systems
Alison B. Flatau, Editor(s)

© SPIE. Terms of Use
Back to Top