Share Email Print

Proceedings Paper

Defect printability and defect inspection simulations of patterned EUVL mask using rigorous coupled-wave analysis
Author(s): Seong-Sue Kim; Roman Chalyck; Sang-Gyun Woo; Han-Ku Cho
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Rigorous coupled-wave analysis(RCWA) is applied to computing near-field of mask scattered by patterned absorber and defects buried in Mo/Si multilayer. Especially, a method of modeling phase defect for application of RCWA is provided, which transforms the multilayer structure deformed by defect into straight multilayer structure with inhomogeneous dielectric constant. This mask near-field is used to get the aerial image as well as mask inspection image of confocal microscope. Using these simulation methods, printability of both phase and amplitude defect are investigated over various size of defect. This study shows that the change in critical dimension(CD) of line and space pattern increases linearly with defect height of phase defect, while increases nonlinearly with that of amplitude defect. A modeling of confocal microscopy is also shown with an example of actinic inspection simulation.

Paper Details

Date Published: 6 May 2005
PDF: 9 pages
Proc. SPIE 5751, Emerging Lithographic Technologies IX, (6 May 2005); doi: 10.1117/12.600459
Show Author Affiliations
Seong-Sue Kim, Samsung Electronics Co., Ltd. (South Korea)
Roman Chalyck, Samsung Electronics Co., Ltd. (South Korea)
Sang-Gyun Woo, Samsung Electronics Co., Ltd. (South Korea)
Han-Ku Cho, Samsung Electronics Co., Ltd. (South Korea)

Published in SPIE Proceedings Vol. 5751:
Emerging Lithographic Technologies IX
R. Scott Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top