Share Email Print
cover

Proceedings Paper

Simultaneous structure and control optimization of tensegrities
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper concerns optimization of prestress of a tensegrity structure to achieve the optimal mixed dynamic and control performance. A linearized dynamic model of the structure is derived. The force density variables that parameterize prestress of the structure appear linearly in the model. The feasible region of these parameters is defined in terms of the extreme directions of the prestress cone. Several properties of the problem are established inside the feasible region of the parameters. The problem is solved using a gradient method that provides a monotonic decrease of the objective function inside the feasible region. A numerical example of a cantilevered planar tensegrity beam is shown.

Paper Details

Date Published: 19 May 2005
PDF: 9 pages
Proc. SPIE 5757, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, (19 May 2005); doi: 10.1117/12.600106
Show Author Affiliations
Milenko Masic, Univ. of California/San Diego (United States)
Robert E. Skelton, Univ. of California/San Diego (United States)


Published in SPIE Proceedings Vol. 5757:
Smart Structures and Materials 2005: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top