Share Email Print
cover

Proceedings Paper

Advanced piezoelectric single crystal based actuators
Author(s): Xiaoning Jiang; Paul W. Rehrig; Wesley S. Hackenberger; Edward Smith; Shuxiang Dong; Dwight Viehland; Jim Moore Jr.; Brian Patrick
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

Paper Details

Date Published: 16 May 2005
PDF: 10 pages
Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); doi: 10.1117/12.600019
Show Author Affiliations
Xiaoning Jiang, TRS Technologies, Inc. (United States)
Paul W. Rehrig, TRS Technologies, Inc. (United States)
Wesley S. Hackenberger, TRS Technologies, Inc. (United States)
Edward Smith, The Pennsylvania State Univ. (United States)
Shuxiang Dong, Dept. of Materials Science and Engineering, Virginia Polytech (United States)
Dwight Viehland, Dept. of Materials Science and Engineering, Virginia Polytech (United States)
Jim Moore Jr., SRS Technologies (United States)
Brian Patrick, SRS Technologies (United States)


Published in SPIE Proceedings Vol. 5761:
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics
William D. Armstrong, Editor(s)

© SPIE. Terms of Use
Back to Top