Share Email Print
cover

Proceedings Paper

Advanced piezoelectric single crystal based transducers for naval sonar applications
Author(s): Kevin A. Snook; Paul W. Rehrig; Wesley S. Hackenberger; Xiaoning Jiang; Richard J. Meyer; Douglas Markley
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

TRS is developing new transducers based on single crystal piezoelectric materials such as Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT). Single crystal piezoelectrics such as PMN-PT exhibit very high piezoelectric coefficients (d33 ~ 1800 to >2000 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, which may be exploited for improving the performance of broad bandwidth and high frequency sonar. Apart from basic performance, much research has been done on reducing the size and increasing the output power of tonpilz transducers for sonar applications. Results are presented from two different studies. "33" mode single crystal tonpilz transducers have reduced stack lengths due to their low elastic stiffness relative to PZTs, however, this produces non-ideal aspect ratios due to large lateral dimensions. Alternative "31" resonance mode tonpilz elements are proposed to improve performance over these "33" designs. d32 values as high as 1600 pC/N have been observed, and since prestress is applied perpendicular to the poling direction, "31" mode Tonpilz elements exhibit lower loss and higher reliability than "33" mode designs. Planar high power tonpilz arrays are the optimum way to obtain the required acoustic pressure and bandwidth for small footprint, high power sensors. An important issue for these sensors is temperature and prestress stability, since fluctuations in tonpilz properties affects power delivery and sensing electronic design. TRS used the approach of modifying the composition of PMN-PT to improve the temperature dependence of properties of the material. Results show up to a 50% decrease in temperature change while losing minimal source level.

Paper Details

Date Published: 16 May 2005
PDF: 9 pages
Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); doi: 10.1117/12.599928
Show Author Affiliations
Kevin A. Snook, TRS Technologies, Inc. (United States)
Paul W. Rehrig, TRS Technologies, Inc. (United States)
Wesley S. Hackenberger, TRS Technologies, Inc. (United States)
Xiaoning Jiang, TRS Technologies, Inc. (United States)
Richard J. Meyer, Applied Research Lab., The Pennsylvania State Univ. (United States)
Douglas Markley, Applied Research Lab., The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 5761:
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics
William D. Armstrong, Editor(s)

© SPIE. Terms of Use
Back to Top