Share Email Print
cover

Proceedings Paper

Monte Carlo analysis of ionic polymers with cluster morphology
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A computational micromechanics model applying Monte Carlo methodology has been developed to predict the equilibrium state of a single cluster of an ionomeric polymer with cluster morphology. No assumptions are made regarding the distribution of charge or the shape of the cluster. Assuming a constant solvated state, the model tracks the position of individual ions within a given cluster in response to ion-ion interaction, mechanical stiffness of the pendant chain, cluster surface energy, and external electric field loading. Expressions are developed to directly account for forces imposed on ions due to ion-cluster surface interaction. The model is applied to study the impact of counterion size. Predictions suggest that smaller counterions lead to a system which better facilitates ion transport than larger counterions. Results further suggest that, regardless of ion size, ion pairing is rarely complete; this in turn suggests that the classic assumptions will tend to under-predict electromechanical actuation response in general.

Paper Details

Date Published: 16 May 2005
PDF: 10 pages
Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); doi: 10.1117/12.599909
Show Author Affiliations
Lisa Mauck Weiland, Univ. of Pittsburgh (United States)
Donald J. Leo, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 5761:
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics
William D. Armstrong, Editor(s)

© SPIE. Terms of Use
Back to Top