Share Email Print
cover

Proceedings Paper

Elastic wave attenuation in composite laminates with cracks
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In structural health monitoring, energy dissipation of wave propagation is a key factor to determine optimal placement of sensors and quantify damage. This paper focuses on the study of wave scattering and attenuation in fiber-reinforced composite laminates with damage. In order to obtain the overall attenuation coefficient, the propagation of elastic shear wave in fiber-matrix medium is investigated starting from the Helmholtz equation. The wave attenuation due to interfacial damage is considered. The attenuation due to cracks of varying sizes and the effect of frequency on the attenuation value has been examined. It can be shown that a critical frequency exists at a given crack size for which the attenuation in the composite medium is at its highest value. Furthermore, the wave attenuation in composite laminates is investigated by incorporating energy transfer in layerwise medium. The overall attenuation coefficient for the laminate is obtained. Experiments are also conducted to evaluate some of the observations obtained from the model.

Paper Details

Date Published: 17 May 2005
PDF: 12 pages
Proc. SPIE 5764, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, (17 May 2005); doi: 10.1117/12.599868
Show Author Affiliations
David Miller, Arizona State Univ. (United States)
Santanu Das, Arizona State Univ. (United States)
Xu Zhou, Arizona State Univ. (United States)
Aditi Chattopadhyay, Arizona State Univ. (United States)


Published in SPIE Proceedings Vol. 5764:
Smart Structures and Materials 2005: Smart Structures and Integrated Systems
Alison B. Flatau, Editor(s)

© SPIE. Terms of Use
Back to Top