Share Email Print
cover

Proceedings Paper

Chemo-mechanical model of biological membranes for actuation mechanisms
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by ATP hydrolysis assists the transport of ions and fluids to achieve volumetric expansion and homeostasis. Materials that develop pressure and hence strain similar to bio-materials are classified as nastic materials. Recent calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100 kJ/m3. Our initial investigation was based on capsules that generate pressure thus causing strain in the surrounding matrix material. Our present work focuses on our efforts to fabricate a representative actuation structure and describes the chemo-mechanical constitutive equation for such a material. The actuator considered in this work is a laminated arrangement of a hydraulic actuator plate with microscopic barrels and a fluid reservoir kept separated by a semi-permeable membrane dispersed with biological transporters. We present here our initial design and a mathematical model to predict the fluid flux and strain developed in such an actuator.

Paper Details

Date Published: 16 May 2005
PDF: 11 pages
Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); doi: 10.1117/12.599764
Show Author Affiliations
Vishnu-Baba Sundaresan, Virginia Polytechnic Institute and State Univ. (United States)
Donald J. Leo, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 5761:
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics
William D. Armstrong, Editor(s)

© SPIE. Terms of Use
Back to Top