Share Email Print

Proceedings Paper

Multiscale constitutive model of magnetic shape memory alloys
Author(s): Vesselin Stoilov
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Important advances in multi-scale computer simulation techniques for computational materials science have been made in the last decade as scientists and engineers strive to imbue continuum-based models with more-realistic details at quantum and atomistic scales. One major class of multi-scale models directly couples the atomistic detail to the macro region modeled using continuum concepts and finite element methods. Here, the development of such coupled atomistic/continuum model is presented within a single coherent framework with the aim of providing quantitative description of the constitutive behavior of magnetic shape memory alloys. A formulation of the Helmholtz free energy potential based on one-dimensional Ising model has been derived. The developed thermodynamic potential has been used in the context of the sharp phase front-based continuum model of the first order phase transformations suggested by Stoilov and Bhattacharyya (Acta Mat. 2002).

Paper Details

Date Published: 16 May 2005
PDF: 12 pages
Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); doi: 10.1117/12.599710
Show Author Affiliations
Vesselin Stoilov, Univ. of Windsor (Canada)

Published in SPIE Proceedings Vol. 5761:
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics
William D. Armstrong, Editor(s)

© SPIE. Terms of Use
Back to Top