Share Email Print
cover

Proceedings Paper

The improvement of the overlay accuracy using the reticle distortion correction for EPL technologies
Author(s): Kaoru Koike; Hiroshi Sakaue; Hiroshi Arimoto; Akira Tamura; Takashi Susa; Kojiro Ito
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Electron projection lithography (EPL) is one of the most promising candidates for the next generation lithography toward the hp 45 nm-node and beyond. EPL employs a stencil mask made from 200 mm Si wafer without a support frame, therefore chucking of an EPL tool and a metrology tool causes deformation in an EPL reticle. However, linear components of sub-field (SF) position error can be corrected by reticle alignment features of an EPL tool, whereas the non-linear components of SF position error can be corrected where each SF is measured beforehand and the corresponding reticle distortion correction (RDC) data is fed into the EPL exposure tool. The SF position error can be viewed as inter-SF IP error where it can be affected by the repeatability of measurement and by the repeatability of distortions caused by the chucking of the measurement tool and the EPL tool. The other part of inter-SF IP comes from the residual that relates to global IP. Besides inter-SF IP, intra-SF IP can be divided into "local IP" and "pattern distribution". For our studies we have investigated the measurement repeatability of the metrology tool (Nikon XY-6i), distortion repeatabilities caused by the chucking of the metrology tool and the EPL tool (NSR-EB1A), global and local IPs, and pattern distortion. Currently we find the effect of mask IP on wafer scale is less than 9 nm, and we believe that in the near future the EPL mask IP target for the hp 45 nm-node could be realized.

Paper Details

Date Published: 6 May 2005
PDF: 8 pages
Proc. SPIE 5751, Emerging Lithographic Technologies IX, (6 May 2005); doi: 10.1117/12.599332
Show Author Affiliations
Kaoru Koike, Semiconductor Leading Edge Technologies, Inc. (Japan)
Hiroshi Sakaue, Semiconductor Leading Edge Technologies, Inc. (Japan)
Hiroshi Arimoto, Semiconductor Leading Edge Technologies, Inc. (Japan)
Akira Tamura, Toppan Printing Co., Ltd. (Japan)
Takashi Susa, Toppan Printing Co., Ltd. (Japan)
Kojiro Ito, Toppan Printing Co., Ltd. (Japan)


Published in SPIE Proceedings Vol. 5751:
Emerging Lithographic Technologies IX
R. Scott Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top