Share Email Print
cover

Proceedings Paper

Fabrication of sub 45 nm random patterns through centerline phase-shifting mask (CL-PSM)
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Centerline phase-shifting mask (CL-PSM), which has narrow chromium lines at the boundaries of a μ-phase shifter, is promising as a resolution enhancement technology for random-pitch line patterns. We compared the performance of the CL-PSM in fabricating sub-45 nm lines with that of the chrome-less phase-shifting mask (CLM) in 157-nm lithography. The simulation results showed the CL-PSM is superior to the CLM in resolution and depth of focus (DOF), especially in small pitch patterns. We optimized the layouts of CL-PSM and the CLM to 40-nm-wide, 140-nm-pitch line patterns through the simulation. In exposure experiments with optimized masks, the CL-PSM resolved 40-nm-wide line patterns with a minimum pitch of 110 nm, while the resolvable minimum pitch was 130 nm for the CLM. The DOFs for 40-nm-wide, 140-nm-pitch lines were 200 and 80 nm with CL-PSM and CLM, respectively. Furthermore, we estimated the resolution limit of CL-PSM in hyper-NA 193-nm lithography, and showed a pitch of 100 nm would be achieved with a 1.4 NA optics.

Paper Details

Date Published: 12 May 2004
PDF: 9 pages
Proc. SPIE 5754, Optical Microlithography XVIII, (12 May 2004); doi: 10.1117/12.599309
Show Author Affiliations
Jeung-woo Lee, Semiconductor Leading Edge Technologies, Inc. (Japan)
Seiji Matsuura, Semiconductor Leading Edge Technologies, Inc. (Japan)
Kiyoshi Fujii, Semiconductor Leading Edge Technologies, Inc. (Japan)


Published in SPIE Proceedings Vol. 5754:
Optical Microlithography XVIII
Bruce W. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top