Share Email Print
cover

Proceedings Paper

A new monocyclic fluoropolymer for 157-nm and 193-nm photoresists
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We earlier developed new monocyclic fluoropolymers (ASF-2) for F2 resist materials. But, it is necessary for ASF-2 to improve of their characteristics, especially the dry-etching resistance, in order to apply for ArF and F2 lithography at fine design rules. In this study, to improve the dry-etching resistance keeping good characteristics of ASF-2, we examined using two methods. The one is to co-polymerize with ASF-2; the other is to introduce protective groups. We synthesized a new series of fluorinated co-polymers (ASF-2 with various monomers, e.g., methacrylate derivatives and vinyl ester derivatives). We found that the dry-etching resistance was improved by co-polymerization. Especially, the co-polymer with methacrylates containing an adamantyl moiety had a good dry-etching resistance, 1.45 vs. conventional KrF resist. This co-polymer also kept a good transparency at 193 nm. The introduction of various protective groups to the hydroxyl group of ASF-2 was also investigated. As the result of the optimization of protective groups and a protecting ratio, the partially protected ASF-2 with CCOM protecting groups had a good transparency at 157 nm and a good etching resistance (1.42 vs. conventional KrF resist). Using partially CCOM protected ASF-2 with an appropriate protecting ratio, sub-60 nm line and space pattern in 150 nm-thick film was obtained.

Paper Details

Date Published: 4 May 2005
PDF: 10 pages
Proc. SPIE 5753, Advances in Resist Technology and Processing XXII, (4 May 2005); doi: 10.1117/12.599162
Show Author Affiliations
Takashi Sasaki, Asahi Glass Co., Ltd. (Japan)
Yoko Takebe, Asahi Glass Co., Ltd. (Japan)
Osamu Yokokoji, Asahi Glass Co., Ltd. (Japan)
Akihiko Otoguro, Semiconductor Leading Edge Technologies, Inc. (Japan)
Kiyoshi Fujii, Semiconductor Leading Edge Technologies, Inc. (Japan)


Published in SPIE Proceedings Vol. 5753:
Advances in Resist Technology and Processing XXII
John L. Sturtevant, Editor(s)

© SPIE. Terms of Use
Back to Top