Share Email Print

Proceedings Paper

Influence of asymmetry of diffracted light on printability in EUV lithography
Author(s): Minoru Sugawara; Iwao Nishiyama; Mikio Takai
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In EUV lithography, off-axis incident light on a mask can produce a printed image that is asymmetrical with respect to its center, even when a line and space pattern is perfectly symmetrical on the mask. A theoretical analysis of diffracted light shows that the asymmetry tends to occur, when diffracted rays of the 2nd order or higher pass through the pupil and are involved in creating the image on a wafer. In contrast, when only 0th- and 1st-order diffracted rays pass through the pupil, the printed image is always symmetrical regardless of any asymmetry in their amplitude and/or phase. In order to discover the causes of the asymmetry in aerial images, we used line-and-space line patterns with a pitch of 88 nm on a wafer, because this pattern pitch generates 0th-, 1st- and 2nd-order rays for the optical conditions of an NA of 0.25 and a σ of 0.80. Under these conditions, a thicker Ta absorber (107 nm) produces greater asymmetry than a thinner one (64 nm), especially when the target linewidth is around 44 nm (on wafer). An analysis of diffracted light and the combinations of diffraction orders involved in creating an aerial image reveals that asymmetry in a printed image is caused by 2nd-order diffracted rays.

Paper Details

Date Published: 6 May 2005
PDF: 12 pages
Proc. SPIE 5751, Emerging Lithographic Technologies IX, (6 May 2005); doi: 10.1117/12.598994
Show Author Affiliations
Minoru Sugawara, Association of Super-Advanced Electronics Technologies (Japan)
Iwao Nishiyama, Association of Super-Advanced Electronics Technologies (Japan)
Mikio Takai, Osaka Univ. (Japan)

Published in SPIE Proceedings Vol. 5751:
Emerging Lithographic Technologies IX
R. Scott Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top