Share Email Print
cover

Proceedings Paper

Bridge health assessment system with fatigue analysis algorithm
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A modern bridge is such a complicated system that is difficult to analyze by conventional mathematic tools. A rational bridge monitoring requires a good knowledge of the actual condition of various structural components. Fatigue analysis of concrete bridges is one of the most important problems. Concrete bridges are often undergoing a fatigue deterioration, starting with cracking and ending with large holes through the web. There is a need for the development of efficient health assessment system for fatigue evaluation and prediction of the remaining life. This information has clear economical consequences, as deficient bridges must be repaired or closed. The goal of this research is to provide a practical expert system in bridge health evaluation and improve the understanding of bridge behavior during their service. Efforts to develop a functional bridge monitoring system have mainly been concentrated upon successful implementation of experienced-based machine learning. The reliability of the techniques adopted for damage assessment is also important for bridge monitoring systems. By applying the system to an in-service PC bridge, it has been verified that this fuzzy logic expert system is effective and reliable for the bridge health evaluation.

Paper Details

Date Published: 17 May 2005
PDF: 11 pages
Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); doi: 10.1117/12.598852
Show Author Affiliations
Xuan Wang, Univ. of Illinois at Chicago (United States)
M. L. Wang, Univ. of Illinois at Chicago (United States)
Yang Zhao, Univ. of Illinois at Chicago (United States)


Published in SPIE Proceedings Vol. 5765:
Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top